

Rogue Wave ThreadSpotter

Optimization Tutorial – In-Memory Table Lookups

Executive Summary
Rogue Wave ThreadSpotter is a programmer’s tool that analyzes an application and then presents a list of
high level advice (a.k.a SlowSpots) telling the programmer where and how to change the application to
improve its performance.

There are many different causes for poor performance, and Rogue Wave ThreadSpotter focuses on finding
how the limited resources of modern multi-core processors and their memory hierarchies are used by the
program. Simple changes can make a huge difference in performance and scalability.

In this paper we present a series of gradual changes to a sample application. The changes were prompted by
advice and statistics from the tool, leading to a 46x performance boost on a single core, and more than 83x on
an 8-core system, where the final version displays almost perfect linear scaling.

2
Copyright © 2012 Rogue Wave Software

Overview
This is a tutorial showing typical scenarios and techniques when working with Rogue Wave
ThreadSpotter to improve an application’s performance.

In a modern computer, the memory system components contribute to a large part of the
performance characteristics of an application:

 The memory bus is responsible for transferring data from the memory to the CPU cores,
and this bus has a limited bandwidth. The more cores there are demanding data, the
higher the pressure on the bus. This ultimately puts a cap on application performance.

 Inside the CPU, there are several layers of small but fast memories, known as caches.
The caches store often used data for quick access. Since the size of the caches are small,
and the penalty for not finding your data in the cache is large, the application
performance is highly limited by how well it manages to utilize the caches.

 The CPU is equipped with a unit called a prefetcher, which is responsible for
anticipating application memory accesses and populating the caches ahead of time with
the data likely to be requested by the application. It inspects the application data flow
and has an easier time finding patterns in the traffic when the application performs
regular accesses.

Locality is a central concept denoting a favorable characteristic, which in this context should be
interpreted as it is cheaper to access different memory locations that are close than locations
that are far apart (spatial locality), and that it is better to revisit the same memory location
sooner rather than later (temporal locality).

Naïve programming will often cause these resources to be sub-optimally used, and
ThreadSpotter helps to pinpoint where the program could be made to run faster, by explaining
how to be leaner with respect to memory bandwidth, memory latency, and cache usage and
shows where the governing principles are broken.

 This is done by:

 Enhancing application memory access regularity to help the hardware prefetcher.
 Enhancing spatial locality to help minimize the amount of unused data transferred

between memory and cache, and to minimize the amount of cache space occupied by
unused data.

 Enhancing temporal locality by suggesting ways to reuse data while it remains in the
cache.

 Hide memory access latencies by adding prefetch instructions.

Rogue Wave ThreadSpotter
Rogue Wave ThreadSpotter analyzes an application’s interaction with the cache and the
memory subsystems. It can analyze single thread and multithread code on single- and multi-
cores, as well as multi-processor machines.

3
Copyright © 2012 Rogue Wave Software

Rogue Wave ThreadSpotter also focuses on multi-threaded issues on multi-cores arising from
thread interactions and communication between the cores and caches within the processor.

It consists of a few utilities:

 A sampler. This component spies on the application and collects information.
 A reporter. The collected information is analyzed and results are written to a report.
 A graphical user interface to set parameters for sampling and report generation
 Command line tools to do the same thing

In addition, a regular web browser is used to read the reports. The reports are heavily cross-
linked to allow efficient navigation between statistics, advice detail and source code.

Optimization Workflow
Optimization is an iterative process. It is a very good idea to first establish a repeatable test
environment where the execution time can be measured. Then it is easy to try out various
changes, and see their effect.

When optimizing an application, alterations to the program’s source code and inherent structure
will be made, and these changes can be of local or global scope. Optimization sometimes reduces
legibility, maintainability, encapsulation and coherence. It may introduce redundant code and
replicate or de-normalize data. It is generally a good idea to prepare for this and to agree on an
acceptable level.

The next task is to get somewhat acquainted with the code. After sampling the application for
the first time, spend some time looking through ThreadSpotter’s reports. Briefly go over the top
items in each advice category to see whether they reference related code sections. Usually,
resolving the advice affects structure definitions and their subsequent use throughout the
application, so it is worthwhile to browse around and familiarize yourself with the code in
question.

There are different approaches, but one that works fairly well is to look for signs of irregular
accesses (random access issues) high up in the latency issues category, and see if those can be
addressed. That will increase access regularity in your program, which will help the processor to
anticipate its data accesses.

Then move to look for cache line utilization optimization issues and incorrect loop order issues,
which both relate to lack of spatial locality. Throughout the memory system, data travels in
chunks, and the minimum amount that is fetched and stored in a cache is known as a cache line,
typically 64 bytes. Making use of all data in a cache line is high up on the list of optimizations.

After that, look for long-term reuse opportunities. Rogue Wave ThreadSpotter suggests
applying common reuse techniques through the blocking and loop fusion advice. These code
transformations promise rewarding returns but may require more extensive changes to loop
and function structure. The resulting effect is that data is reused multiple times while it is still
mapped in the cache. This reduces the pressure on the memory bus.

After fixing each SlowSpot, recompile and measure the performance to see if there was any
performance increase.

4
Copyright © 2012 Rogue Wave Software

Then, sample the application anew, prepare new reports and restart the process.

Labs Part

Setting Up Your Environment
Please load the LiveDVD into the DVD-Drive of your laptop and start the machine. If the DVD-
Drive is the first item in your boot list your computer will automatically boot an Ubuntu Linux
operating system from the DVD. If not you may change the boot order by either creating a
temporary boot menu (usually by pressing F12 during startup) or by changing your BIOS
settings.

Ubuntu will ask you to choose your language first.

The LiveDVD offers the opportunity to try Ubuntu without installation. Please choose this
option if you want to avoid any installation on your hard disk.

As a next step you will be prompted for login.

Please login as “demouser”. Your password will be “demouser” as well.

If Linux has been loaded please plug the usb memory stick into a free port. The directory on the
stick will be mounted to the file system the LiveDVD has established in memory.

Open a console window and move to the memory stick’s mount point by typing:

demouser@ubuntu:~$ cd /media

type:

demouser@ubuntu:/media$ ls

You will see a subdirectory which is named as your memory stick’s volume id.

Move to that subdirectory by typing:

demouser@ubuntu:/media$ cd /xxxxx.xxxxx

Note: xxxx.xxxx has to be replaced by your memory stick’s volume id

Type:

demouser@ubuntu:/media/xxxx-xxxx$ ls

You will see three subdirectories and a shell script called “setup.sh”. Please source the script by
typing

5
Copyright © 2012 Rogue Wave Software

 demouser@ubuntu:/media/xxxx-xxxx$ source ./setup.sh

The script will set up your environment by updating the PATH variable in order to include the
latest ThreadSpotter edition which is installed on the memory stick.

The memory stick’s directory structure looks as follows:

 The directory called “threadspotter” contains an already installed version of the latest
Rogue Wave ThreadSpotter product.

 The “threadspotter_install” directory contains Rogue Wave ThreadSpotter installers for
Linux and Windows.

 The directory “tutorial” contains source files, a makefile and some shell scripts you will
need for this tutorial.

Please move to the “tutorial” directory by typing

demouser@ubuntu:/media/xxxx-xxxx$ cd tutorial

demouser@ubuntu:/media/xxxx-xxxx/tutorial$

You have now prepared your environment for starting with the labs part.

6
Copyright © 2012 Rogue Wave Software

Example Application
The application is an example of a memory bandwidth intensive code with a host of problems in
the areas outlined above.

The application models an in-memory database table, and a queue of queries against that table.

Different versions of the code implement the table using different data structures and ways to
represent data and queries.

The different versions share a common part consisting of a test driver and data structures. The
differences between different versions are located in the various database_n*.hh files.

In this tutorial, one of the purposes is to enable a detailed comparison between different source
code variants. We carefully control the point where the sampler engages and disengages . This is
explained in the Appendix, and the scripts in the source distribution also do this for you.

Building the Example Application
In order to discover opportunities for performance optimization Rogue Wave ThreadSpotter
samples binaries of an application. For looking up related lines in the source code ThreadSpotter
needs to make use of references included in the binary’s debug information. Therefore it is
recommended to prepare debug builds by using the –g compiler option.

Building the different versions of the example application is straight forward because an already
prepared makefile invokes the gcc compiler by using the correct compiler flags (-g -O3).

Please type

demouser@ubuntu:/media/0012-D687/tutorial$ make all

The following binaries will be built:

test1 test1b test1c test2 test3 test4 test4b

(In case you encounter problems in building the examples please find already built binaries in
the directory /media/xxxx-xxxx/tutorial/already_built/bin)

7
Copyright © 2012 Rogue Wave Software

Lab 1 – Baseline: Standard Doubly-Linked List of Records
The baseline code uses a standard C++ list template, std::list, to store database records.

The vital part of the original version looks like this:

class database_1_linked_list_t : public single_question_database_t {
public:
 virtual void ask_one_question(query_t &query) const;
private:
 typedef std::list<car_t> cars_t;
 cars_t cars;
};

void database_1_linked_list_t::ask_one_question(query_t &query) const {
 cars_t::const_iterator i = cars.begin(), e = cars.end();
 for (; i != e; i++) {
 switch (query.query_type) {
 case 0: // count matching colors
 if (i->color == query.car.color)
 query.result++;
 break;
 case 1: // count same model but heavier than minimum weight
 if (i->model == query.car.model &&
 i->weight > query.car.weight)
 query.result++;
 break;
 }
 }
}

Please execute this version by typing

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test1

The program will run as many complete loops as possible in 60 seconds and will print the
median execution time.

Question 1: What is the median execution time of the program version “test1”?

In order to analyze “test1” we now will sample “test1” with ThreadSpotter.

Please type

demouser@ubuntu:/media/xxxx-xxxx/tutorial$ sample --start-at-function start_sampling

--stop-at-function stop_sampling –o test1.smp –r ./test1

If you look at the sampler’s output messages you will see a warning that the number of samples
would not be enough for reliable results. The warning includes a recommendation for an
adjusted sample period.

Question 2: How many samples are necessary to get a reliable report?

Please follow the sampler’s advice and start a new sample run by providing the sampler with the
new sample period:

8
Copyright © 2012 Rogue Wave Software

 demouser@ubuntu:/media/xxxx-xxxx/tutorial$ sample --start-at-function start_sampling

--stop-at-function stop_sampling –s <new sample period> –o test1.smp –r ./test1

You will now find a ready to use fingerprint file called “test1.smp” in your working directory.

Question 3: What is the reason for starting/stopping sampling at functions
start_sampling/stop_sampling?

In order to encounter opportunities for optimizing the program with regard to the target
architecture you will need to generate a report based on the sample file.

Please type

demouser@ubuntu:/media/xxxx-xxxx/tutorial$ report –c 2m –i ./test1.smp –o test1-r.tsr

ThreadSpotter’s report generator will create a report named “test1-r.tsr” in your working
directory.
Note: By adding the –c 2m option to the command line we are forcing the generator to generate
a report targeting a last level cache with a cache size of 2Mb. This tutorial is set up to have a
footprint of that general size. If you had not added this cache size override then your system’s
actual parameters would be used instead. Depending on your system’s cache size you might not
get the anticipated result for this programmed tutorial.

Question 4: Why should you always start optimizing your application related to the highest
level cache?

In order to open the report in your browser you will need to start a webserver application called
“view”.

Please type

 demouser@ubuntu:/media/xxxx-xxxx/tutorial$ view –i ./test1-r.tsr

The command above will open the report in your standard browser (in this case Firefox).

Note: Firefox will sometimes tend to switch to its offline mode. In case the report won’t be
displayed please change the mode to “online” in the “File” menu.

The report’s first page will show that “test1” is suffering from limited bandwidth as well as
latency and locality issues. This page tells you that the program has potential for some
improvements.
Please open the main part of the report and open the “Issue” tab of the “Summary” window.

Question 5: What is the dominant issue listed under the “Latency Issues” tab?

As a next step please expand the “Statistics for instructions of this issue” as shown in the “Issue”
window.

Question 6: What is the meaning of “Access randomness” which is very high in this case?

9
Copyright © 2012 Rogue Wave Software

Question 7: What fundamental data structure is the cause of this problem?

Please click on the issue in the “Summary” window and have a look where it occurs in the source
code.
The “Miss ratio” mentioned in the “Statistics for instructions of this issue” shows a high
percentage.

Question 8: What is the reason for the huge amount of cache misses?

Question 9: What is so bad about cache misses?

Question 10: What are the options to avoid the prefetching problem in this case?

After running and sampling the program, the following report is presented:

The first page shows that the application generally suffers from being limited by memory
bandwidth, and also that it is negatively affected by memory latencies and exhibits poor data
locality. This page is meant for the programmer to get an overview of the problems affecting the
application, and at a glance be able to see how optimization attempts play out.

Entering the main part of the report reveals three sub-windows, which contain respectively:

 Lists of issues, loops and global information such as statistics
 Issue details, loop details
 Annotated source code

10
Copyright © 2012 Rogue Wave Software

In the first version of the example program, we find that random access patterns dominate the
latency issue tab. Clicking on the top one will focus the source code frame around one of the two
query sections, and the issue (shown below) details fill up the lower left panel.

High
randomness

Low
hardware
prefetch
probability

11
Copyright © 2012 Rogue Wave Software

Execution time,
(Intel Xeon E5345):
14 seconds

In this case, the top advice in the Latency section tells you about irregularity among the memory
accesses. Advice of this kind points to the accesses to the fields of the elements in the main data
structure, the std::list members, and these items are apparently accessed in a non-contiguous,
irregular way.

This is common for linked lists and other dynamic data structures. Elements are allocated
dynamically and as the heap warms up it becomes fragmented. New allocations reuse free slots
and this tends to spread out these elements in an unpredictable way throughout memory.

A cache is often accompanied by a unit called a hardware prefetcher. Its job is to look at the
application’s memory accesses and try to detect a pattern. If it finds a pattern, it will fetch data to
the cache from memory just ahead of the time when that data is needed. If successful, this hides
much of the memory latency.

More than anything else, it is access randomness that affects how well the
hardware prefetcher will work. For random access patterns, the prefetcher will
not detect any prefetchable patterns, and the core will stall while waiting for
data to arrive.

Consequentially, the statistics for the issue and for the instructions show low hardware prefetch
ratios for this advice.

Optional task: The example version “test1b” uses an intrusive singly linked list instead of the
std::list which is doubly linked. Test1b is further modified in the next section.
Sample this version, generate a report and explore the difference to “test1”.

12
Copyright © 2012 Rogue Wave Software

Lab 2 – Adding Prefetch Hints
As the ThreadSpotter online help will tell you, there are two ways to deal with this situation.
Either you can arrange data in memory in such a way that the hardware prefetcher can
anticipate the access pattern, or add explicit prefetch instructions yourself. We will explore both
ways, but first we focus on the latter suggestion.

Since the data accesses will be irregular, the hardware prefetcher will be inactive. The idea is to
manually add special prefetch instructions to bring data into the cache well ahead of when it is
needed. How much in advance of its use to issue this instruction is a function of how busy the
processor is between the prefetch and the subsequent usage. Assuming that the latency of a
memory access is 100 times slower than the CPU cycle time, one should prefetch data at least
100 cycles before it is needed.

If all you do in your loop is to traverse the list and look at a field or two, it is not enough to
prefetch the next element. You need to be further ahead with prefetching, but this introduces a
problem: It would seem that you need to see the preceding node to be able to find the address to
the next node, and that this appears to preclude prefetching anything but the next node in the
list.

The solution to this is adding an auxiliary field whose only purpose is to point to a node several
steps ahead. Whenever traversing the list, in addition to operating on the data, one should
prefetch the address pointed to by this field.

It turns out that adding an auxiliary field which is set up to point to a node at a proper distance
isn’t usually such a tricky thing. The extra space it occupies is compensated by less time spent
waiting for data.

#define PREFETCH_DISTANCE 8

// Replacing std::list with homegrown linked list
struct node {
 struct node *next;
 struct node *prefetch_hint;
 ... // rest of fields
};

struct node *head;

// Traverse a list and populate prefetch hints to point
// ’PREFETCH_DISTANCE’ steps ahead.
void prepare_prefetch_hint()
{
 struct node *q, *p;
 int distance = PREFETCH_DISTANCE;
 for (p = head; p; p = p->next)
 if (0 == distance--) break;
 for (q = head; p && q; p = p->next, q = q->next)
 q->prefetch_hint = p;
}

struct node *p;
for (p = head; p != 0; p = p->next) {
 __builtin_prefetch(p->prefetch_hint); // gcc specific

 ... // use p-> fields
}

13
Copyright © 2012 Rogue Wave Software

Execution time:

6.5 seconds

Replacing the linked list implementation in our example code with something
similar to this causes the execution time for our example to drop, because more
fetches can be in flight at the same time, and data is already being fetched when
the instruction to consume data is encountered.

Please run the third version by typing

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test1c

Question 1: What is the median execution time of the program version “test1c”?

In order to analyze this program version we will invoke ThreadSpotter’s sampler and report
generator via its graphical user interface (but the same results can be achieved using command
line tools just like in the first lab).

Please open ThreadSpotter’s GUI by typing:

demouser@ubuntu:/media/xxxx-xxxx/tutorial$ threadspotter

Your settings should look similar to the settings shown in the screenshot above. You will need to
tell the sampler that it has to start at function “start_sampling” and to stop at function
“stop_sampling”. Additionally it will be necessary to decrease the initial sample period as we did

14
Copyright © 2012 Rogue Wave Software

when sampling “test1”. Please open the “Advanced sampling settings” window and add the
parameters as shown in the screenshot below.

The last step before starting the sampler and report generator is to set the target cache size to 2
Mb as the fictitious target system’s highest level cache is limited to that size.

Pushing the button “Sample application and generate report” will do the sampling, report
generation and will automatically open the report in the standard browser.

Please open the “Latency issues” tab and explore the “Random access” issue again.

Question 2: Is the prefetcher working efficiently now?

Question 3: What can be done in order to avoid the “Random access” issue?

15
Copyright © 2012 Rogue Wave Software

Execution time:

1.0 seconds.

Lab 3 – Vector of Records
Rerunning the sampling and report generation has not changed much. The access pattern is still
irregular and the hardware prefetcher is still not working well, which can be seen from the low
hardware prefetch probability for the top issue. Adding these software prefetch instructions
removes some of the CPU stalls (the miss rate is lower than before), but this still does not help us
with fully using each cache line (the cache line utilization is still poor).

To get further we need to try a different approach. The other possible remedy suggested by the
ThreadSpotter online help is to revise the data structure, possibly replace it with something
denser.

Two drawbacks with linked lists are that they require extra fields to maintain the list structure,
and that the spatial locality is poor. The former means that less percentage of cache space is
devoted to storing useful data. The latter means that it is improbable that more than one record
is used from each cache line before that cache line is evicted, since nodes are scattered
throughout a large part of the memory, and that two items close in the sequence are located in
the same cache line is improbable. While this can be addressed by implementing a custom
dynamic memory allocator and regularly sort nodes physically in memory, this is a fragile
solution.

The alternative straightforward solution is to use a contiguous storage data type, such as a plain
old array or std::vector.

Replacing the linked list with a vector has other noteworthy implications for some cases. It is no
longer as cheap to remove or insert elements in the middle of the sequence, but random access
is cheap, and maybe more importantly, a linear traversal trivially engages the hardware
prefetcher. Such a traversal causes cache misses on adjacent cache lines, and this is a simple
pattern for the hardware prefetcher to train on. Elements are also placed consecutively and no
extra housekeeping pointers are needed.

If the freedom of a linked list is required, but the dataset is traversed a lot during some phases of
the execution, it is sometimes worthwhile to make a temporary copy of the elements that you
are interested in, stored in a contiguous way. Then use the temporary copy to traverse the data.
Throw away the temporary copy when you are done traversing.

For our case, we see a dramatic reduction in running time when replacing the
linked list with a std::vector.

Please run the version “test2” by typing

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test2

Question 1: What is the median execution time of the program version “test2”?

Please let ThreadSpotter sample “test2” and generate a report. It is up to you whether you prefer
to control ThreadSpotter via gui or by using the command line interface.

16
Copyright © 2012 Rogue Wave Software

Question 2: Has the “Random access issue” been solved by substituting the linked list by a
std::vector?

Please have a look at the issues listed under the “Bandwidth issues” tab.

Question 3: What dominant issue can be found on top of the issues list?

Question 4: Why does low fetch utilization slow down the program?

Question 5: What lines of the source code are responsible for the “Fetch utilization issue”?

Question 6: Do you have any idea how to solve this problem?

17
Copyright © 2012 Rogue Wave Software

The manual offers an
enumeration of the
programming
patterns that cause
poor fetch
utilization, including
code samples.

Lab 4 – Vectors of Hot and Cold Fields
After a sampling/report generation we again look at the top level advice.

Among the top items we now find advice to address a few cases of poor spatial
locality, specifically poor fetch utilization. This basically means that if the
application is not using every byte in a cache line then part of the bandwidth is
consumed to transfer unused data. The same unused data also occupies cache
space that could otherwise be used for useful data. This makes the effective
cache size smaller, and also causes less useful data to fit in each cache line.

The online help outlines the major causes of poor utilization, and offers
examples of remedies.

This case of poor fetch utilization complains that only a part of the car_t type is used in this hot
loop. Several of the other fields are never used, but still use space in the cache (Reg. nr, power.
String buffer is likely allocated elsewhere).

The car_t structure:

The vector:

18
Copyright © 2012 Rogue Wave Software

Execution time:

0.42 seconds.

The usual fix for this problem is to streamline the data layout. In this case,
consider moving each field to its own vector. That way, only the fields being
actively used will be fetched, and since the data set is traversed linearly, all
adjacent entries will be used. No external alignment holes between subsequent
items and no unused data.

Color

Model

Weight

Other fields,
(never fetched
in this context)

One logical record, split
up over several vectors

class database_3_hot_cold_vector_t : public single_question_database_t {
public:
 virtual void ask_one_question(query_t &query) const;
private:
 // Primary database for the cases that infrequently fields are requested
 typedef std::vector<car_t> cars_t;
 cars_t cars;
 // cached dense copies of hot fields
 std::vector<color_t> colors;
 std::vector<model_t> models;
 std::vector<double> weights;
};

void database_3_hot_cold_vector_t::ask_one_question(query_t &query) const {
 for (int i=0; i != cars.size(); i++) {
 switch (query.query_type) {
 case 0: // count matching colors
 if (colors[i] == query.car.color)
 query.result++;
 break;
 case 1: // count same model but heavier
 if (models[i] == query.car.model && weights[i] > query.car.weight)
 query.result++;
 break;
 }
 }
}

19
Copyright © 2012 Rogue Wave Software

The report does offer some additional hints of this problem. Consider
the issue statistics diagram for the top “fetch utilization” issue. The red
dashed line indicates how the fetch ratio would change if the fetch
utilization (blue) could somehow be improved to 100%. We will
revisit this graph in the next section.

Please run “test3” by typing

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test3

Question 1: What is the median execution time of the program version “test3”?

Please sample “test3” and generate a report.
You will notice that the “Fetch utilization” issues have been turned into “Fetch hot-spots”.

Question 2: What is a “Fetch hot-spot”?

Question 4: What opportunities does ThreadSpotter suggest for further improvements?

Question 5: What is the meaning of “spatial locality”?

Question 6: What is the meaning of “temporal locality”?

20
Copyright © 2012 Rogue Wave Software

Lab 5 – Blocking
We perform another round of sampling and report generation.

Now we find that the advice to fix poor fetch utilization has been changed into hot-spots. A hot-
spot is reported for instructions which use a lot of bandwidth, but have otherwise regular access
patterns and most of the data is put to use at least once before the cache line is eventually
evicted.

The statistics show that the fetch utilization is 100%, and comparing
the fetch ratio graph we see that the fetch ratio has gone down to very
close to what was hinted in the previous step. These kind of predictive
capabilities are important to help the programmer judge the impact of
a change before undertaking it.

Now that we have addressed all the spatial reuse opportunities, what
are left in the issue list are different advices to apply blocking, both
with respect to the query data, as well with respect to the car data.

21
Copyright © 2012 Rogue Wave Software

Blocking is a general term suggesting working on the data in smaller chunks, and using that data
many times over before moving on to the next chunk. As there are many different data
structures in this case, blocking can be performed in a few different ways.

The common idea is to break up data into small enough chunks that each chunk fits in the target
cache. If there are multiple data sets, there are typically many different ways one or more of
them can be subdivided and subject to blocking. The common idea is that the total footprint of
active subsets of all data sets needs to fit in the available cache memory.

As an example of this technique, consider this nested loop structure:

 for (int j = 0; j < size_j; j++) {
 for (int i = 0; i < size_i; i++) { // Split this loop ...
 // Do something indexed by i, and possibly j
 sum += a[i];
 }
 }

This will (if size_i is large enough) repeatedly fetch the elements of the vector a. The general
recipe for blocking is to split one of the inner loops to outside the outer loop:

 for (int ii=0; ii < size_i; ii += BLOCK_FACTOR) { // ... like this
 int limit = min(ii + BLOCK_FACTOR, size_i);

 for (int j = 0; j < size_j; j++) {
 for (int i = ii; i < limit; i++) { // and this
 // Do something indexed by i, and possibly j
 sum += a[i];
 }
 }
 }

22
Copyright © 2012 Rogue Wave Software

Execution time:

0.31 seconds.

This will allow subsections of vector a to remain in the cache for repeated executions of the j
loop.

In our example, we have a list of queries against the database. The queries may
arrive on a queue from network connections or other parts of the application.
Rather than processing each query by itself, we may take a block of queries and
process each of them in parallel against the database. That way the total
number of memory fetches will be reduced.

This idea can be implemented in different ways. Either we can make one traversal through the
database, and for each record process all of our queries, or we can break up the database
traversal into sub ranges, and work on one such sub range at a time, traversing it once for each
query. The latter is more efficient in this case, since traversal of sequentially stored vectors is
very efficient and we want to have as long stretches as possible. After all queries have had
partial results recorded from the current sub range, then we advance to the next block of
database records and resume processing our queries against that block.

Pr
oc

es
s

al
l q

ue
ri

es
si

m
ul

ta
ne

ou
sl

y

In this case we opted to break up the database in chunks of BLOCK_FACTOR elements, but also
to group similar queries together into categories, and work on each database sub range, one
category at a time. This may further have helped reduce cache pressure thanks to not involving
too many record fields at the same time.

23
Copyright © 2012 Rogue Wave Software

#define BLOCK_FACTOR 1000

void database_4_blocking2_t::ask_questions(queries_t &queries) const {
 std::vector<query_t*> query_0, query_1;
 for (int j=0; j < queries.size(); j++) {
 query_t &query = queries[j];
 switch (query.query_type) {
 case 0:
 query_0.push_back(&query);
 break;
 case 1:
 query_1.push_back(&query);
 break;
 }
 }

 for (int ii=0; ii < cars.size(); ii += BLOCK_FACTOR) {
 int limit = min(ii + BLOCK_FACTOR, cars.size());

 // query type 0
 for (int j = 0; j < query_0.size(); j++) {
 query_t &query = *query_0[j];
 for (int i = ii; i < limit; i++) {
 if (colors[i] == query.car.color)
 query.result++;
 }
 }

 // query type 1
 for (int j = 0; j < query_1.size(); j++) {
 query_t &query = *query_1[j];
 for (int i = ii; i < limit; i++) {
 if (models[i] == query.car.model &&
 weights[i] > query.car.weight)
 query.result++;
 }
 }
 }
}

If the number of queries to be processed as a batch becomes too large, they too could outgrow
the available cache space. Again, this could be dealt with in the same way, by selecting a smaller
number of queries to work through the database fragments.

Please execute “test4” first. This blocking approach processes chunks of database records.

Please run “test4” by typing

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test4

Question 1: What is the median execution time of the program version “test4”?

The program version “test4b” groups the database records as well as the query types.

Please run “test4b” by typing

demouser@ubuntu:/media/xxxx-xxxx/tutorial$./test4b

Question 2: What is the median execution time of the improved program version “test4b”?

24
Copyright © 2012 Rogue Wave Software

Please sample “test4b” and generate a report. Already the first page will indicate that there are
no significant bandwidth and locality issues left. Memory latency has been improved
significantly.

Opening the report you won’t find any “Slowspot Issues” any more except “Fetch hot-spot”.

There are only a few minor “Opportunity Issues” left.

Question 3: What does “blocking” mean?

Question 4: How do you determine a reasonable blocking factor?

Question 5: Is blocking always possible?

25
Copyright © 2012 Rogue Wave Software

Scalability
We have already measured the single instance performance improvements for each
improvement step. Now, being lean has another benefit: Better scalability. The reasons are
simple: the more parallel activity in a system, the easier it is to saturate the available memory
bus bandwidth. If memory bandwidth is not preserved, then total throughput will suffer.

To gauge this effect, we measure the execution time when deploying more instances of the
program at the same time. The table shows the wall-clock time for all parallel runs to finish, in
seconds (all measurements are made on a Dual Intel Xeon E5345 Quad Core):

cores: 1 2 3 4 5 6 7 8
1 – Linked list 14 16 18 20 23 24 28 30
2 – Prefetched linked list 6.5 8.0 9.7 15 16 17 18 19
3 – Vector 1.0 1.3 2.2 3.9 4.0 4.3 4.5 4.6
4 – Several vectors 0.42 0.44 0.59 0.80 0.97 1.0 1.1 1.2
5 – Blocked 0.31 0.32 0.31 0.31 0.30 0.31 0.34 0.37

And the same information expressed as normalized throughput:

cores: 1 2 3 4 5 6 7 8
1 – Linked list ≡ 1 1.8 2.4 2.8 3.1 3.5 3.5 3.7
2 – Prefetched linked list 2.2 3.5 4.4 3.8 4.5 5.1 5.4 5.9
3 – Vector 14 22 19 15 18 20 22 25
4 – Several vectors 34 63 72 71 73 85 93 98
5 – Blocked 46 89 138 185 232 277 293 309

Notice how the first four program versions level out after just a few instances, and offer very
little extra performance as more cores are used. The first two versions are mostly limited by the
memory latency. The next two versions do better but are still bandwidth limited.

Only the last version scales almost linearly with number of cores. This is due to its preservation
of bandwidth through reuse of data.

26
Copyright © 2012 Rogue Wave Software

If your laptop has been equipped with either a multicore cpu or multiple cpus on board you may
test the scalability of the different example program versions by using the shell script “run-
many.sh”. It will print out the median execution times for 1 to n started instances of a program
(n=number of cores/single core cpus).

 Please type

demouser@ubuntu:/media/xxxx-xxxx/tutorial$ run-many.sh ./test1

and compare the output with

demouser@ubuntu:/media/xxxx-xxxx/tutorial$ run-many.sh ./test4b

Question 1: What is the reason for the improved scalability?

Summary
Based on advice from Rogue Wave ThreadSpotter, we have implemented a series of changes to a
simple table lookup mechanism. We have seen how different data representations and different
data access patterns may have a large impact on application performance and scalability. And
we have achieved magnitudes better performance with relatively moderate changes.

The golden rule is to ensure that all closely placed data is used and reused as much as, and as
soon as possible. If there is regularity in the application’s access patterns, exploit it. Otherwise
seek to change the program into one with such properties.

The studied application is memory bound and therefore responds very well to this treatment.
This is also the case of many numerical applications with large datasets that are repeatedly
traversed.

27
Copyright © 2012 Rogue Wave Software

Appendix I – Controlling the Point for Attach and Detach
As mentioned, for the purpose of this test we want to control exactly when the sampler is active.

We add a dummy function for each point in the code where we want to be able to attach or
detach. To prevent the function from being inlined or optimized away, we use two compiler
specific constructs:

extern "C" __attribute__((noinline)) // gcc syntax
void start_sampling()
{
 asm volatile(""); // gcc syntax
}

extern "C" __attribute__((noinline)) // gcc syntax
void stop_sampling()
{
 asm volatile(""); // gcc syntax
}

int main() {
 // set up data
 // ...

 start_sampling();
 // code to be sampled
 // ...
 stop_sampling();

 // clean up
 // ...
 return 0;
}

Now, the sampling can be started like this:

$ sample --start-at-function start_sampling \
 --stop-at-function stop_sampling -r ./test-binary

By using this technique we create an environment in which we can disregard initializations and
clean-up code, to enable both completely repeatable and comparable runs to be measured.

28
Copyright © 2012 Rogue Wave Software

Appendix II – Answers and Explanations

Lab 1
Question 1: What is the median execution time of the program version “test1”?

Answer: Depending on your hardware you will most likely get a medium execution time in the
range of 11.5 seconds to 12.5 seconds.

Question 2: How many samples are necessary to get a reliable report?
Answer: 10000 samples.

Question 3: What is the reason for starting/stopping sampling at functions
start_sampling/stop_sampling?

Answer: In order to guarantee comparable sample conditions for all our test programs we need
to ensure not to sample for instance the initial parts of the programs which could differ
regarding their execution times. Appendix I describes how to use dummy functions for
controlling the sampler’s attach- and detach-points.

Question 4: Why should you always start optimizing your application related to the highest
level cache?

Answer: The highest level cache is the one of most capacity. Usually the memory footprint of an
application is not small enough in order to fit in the first level cache. In contrast the highest level
cache will be able to store a huge amount of the application’s data. That means that optimizing
regarding the highest level cache will show most significant improvements.

Question 5: What is the dominant issue listed under the “Latency Issues” tab?

Answer: It’s a “Random access” issue. All issues are listed ordered by severity. The “Random
access” issue can be found on top of the list.

Question 6: What is the meaning of “Access randomness” which is very high in this case?

Answer: The access to data is very irregular. The prefetcher is not able to detect patterns in
order to determine the data that will be used next. Therefore it is working inefficiently.

Question 7: What fundamental data structure is the cause of this problem?

Answer: In this case the linked list is responsible for the problem. In general pointer chasing,
dynamically allocated chained structures like trees, graphs and lists tend to distribute data
randomly in memory.

Question 8: What is the reason for the huge amount of cache misses?

Answer: If the prefetcher is not working efficiently the likelihood that requested data has not
been cached increases. A fetch to the cache will more often end up in a miss.

Question 9: What is so bad about cache misses?

29
Copyright © 2012 Rogue Wave Software

Answer: The cpu stalls for a long time while waiting for data to be transferred from main
memory to the cache.

Question 10: What are the options to avoid the prefetching problem in this case?

 Answer: In order to avoid the prefetching problem it would be possible either to add prefetch
instructions to the code or storing the data in a way that traversals will be easier to prefetch.

Lab 2
Question 1: What is the median execution time of the program version “test1c”?

Answer: Depending on your hardware you will most likely get a medium execution time in the
range of 11.0 seconds to 12.0 seconds. It will probably be slightly faster than “test1”

Question 2: Is the prefetcher working efficiently now?

Answer: The prefetcher is definitely working slightly better because of the implemented
prefetch statements but is still far from working efficiently. You will see a positive effect of a
slightly lower miss-fetch ratio because of a little better prefetch probability.

Question 3: What can be done in order to avoid the “Random access” issue?

Answer: As we have already tried to solve the problem by including software prefetch
statements the only option left is to substitute the linked list by another more prefetcher
friendly data structure like a simple array or a std::vector.

Lab 3
Question 1: What is the median execution time of the program version “test2”?

Answer: The execution time went down dramatically. Your tests will probably show results
around 0.5 seconds.

Question 2: Has the “Random access” issue been solved by substituting the linked list with a
std::vector?

Answer: Yes, the “Random access” issue has been solved. You will find no issue listed under the
“Latency issues” tab any more.

Question 3: What dominant issue can be found on top of the issues list?

Answer: The most important issue to solve is a “Fetch utilization” problem now.

Question 4: Why does low fetch utilization slow down the program?

Answer: If the cache lines only partially consist of data used by the program a lot of valuable
cache space is filled up with useless data. In addition the useless data also has to be transferred
from main memory to the cache and will require bandwidth unnecessarily.

Question 5: What lines of the source code are responsible for the “Fetch utilization issue”?

Answer: database_2_vector.hh, line 37 and line 41 if (i->color == query.car.color)
and if (i->model == query.car.model && i->weight > query.car.weight)

30
Copyright © 2012 Rogue Wave Software

Question 6: Do you have any idea how to solve this problem?

Answer: In general splitting complex structure into sub-structures could solve issues like this. In
this case splitting the “car_t” structure into multiple vectors would improve the cache line
utilization. Only vectors containing the “usable” data would be copied to the cache.

Lab 4
Question 1: What is the median execution time of the program version “test3”?

Answer: The median execution time will be probably about 0.4 seconds.

Question 2: What is a “Fetch hot-spot”?

Answer: A “Fetch hot-spot” issue will be reported when ThreadSpotter has encountered a
location which is responsible for an exceptionally large number of cache line fetches.

Question 4: What opportunities does ThreadSpotter suggest for further improvements?

Answer: Spatial/temporal blocking.

Question 5: What is the meaning of “spatial locality”?

Answer: Spatial locality means that a program is using data which is located in memory close to
the already used data. Because chunks of data are loaded into the cache it is most likely that data
located close to recently requested data will also reside in the cache. Spatial blocking can help to
improve spatial locality.

Question 6: What is the meaning of “temporal locality”?

Answer: Temporal locality means that a program is reusing recently used data again. The
likelihood that the data is still in the cache is dependent on the time between the two accesses.
Temporal blocking may improve temporal locality.

Lab 5
Question 1: What is the median execution time of the program version “test4”?

Answer: The median execution time will probably about 0.5 seconds.

Question 2: What is the median execution time of the improved program version “test4b”?

Answer: You will probably see an improved median execution time of about 0.3 seconds.

Question 3: What does “blocking” mean?

Answer: Rearranging algorithms, specifically the order or nesting of loops, to focus on working
on smaller subsets of the data. The idea is to partition the data set into small enough fractions
that will fit in the target cache. Then change the algorithms to read and update that data a
number of times before letting them be evicted from the cache.

Question 4: How do you determine a reasonable blocking factor?

Consider the available cache space, and look at the fetch rate curve. The place where the fetch
rate curve gets close to 0 is the active footprint of the algorithm. The relationship of this point

31
Copyright © 2012 Rogue Wave Software

compared to the cache size gives you a factor by which you need to reduce your current
footprint.

Note that this factor applies to all data sets that are being touched. Guided by this factor and
other knowledge of your program, you need to figure out how much to reduce and block each
data set.

Question 5: Is blocking always possible?

Applying blocking invariably means that you will be altering the order of traversal of elements in
your data sets. This may not always be possible. As a basic observation, if the changed code
mandates a different order of say a read and a write operation to the same data, the new
program will have a different meaning than the old one. So-called loop carried dependencies (or
just data dependencies for short) may therefore prevent you from using blocking techniques.

Sometimes it is possible to find non-regular or oblique spatial decompositions that allow you to
succeed in finding blocking. Sometimes it is not possible, and in that case you would have to
revisit your algorithm seeking alternative calculation schemes, possibly with different numerical
properties.

Scalability
Question 1: What is the reason for the improved scalability?

Answer: Temporal blocking means significantly reduced need to re-fetch data. Due to
minimizing the bandwidth requirement of the application the cpus/cores do not stall even if
many instances share the bus system.

32
Copyright © 2012 Rogue Wave Software

Appendix III – Issues Discovered by ThreadSpotter

SlowSpot Issues Opportunity Issues

 Fetch utilization Spatial blocking

 Write back utilization Temporal blocking

 Communication utilization Spat/temp blocking

 Inefficient loop nesting Loop fusion

 Random access Non-temporal data

 Prefetch: too close Non-temporal store possible

 Prefetch: too distant Fetch hot-spot

 Prefetch: unnecessary Write-back hot-spot

 False sharing Communication hot-spot

Contact information
General Inquiries: sales@roguewave.com

German Office: +49 6103 5934 0

 sales@roguewave.de

http://www.roguewave.com

